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Abstract

Based on Poisson equation for pressure, a nodal numerical scheme is developed for the time-dependent, incom-

pressible Navier–Stokes equations. Derivation is based on local transverse-integrations over finite size brick-like cells

that transform each partial differential equation to a set of ordinary differential equations (ODEs). Solutions of these

ODEs for the transverse-averaged dependent variables are then utilized to develop the difference scheme. The discrete

variables are scalar velocities and pressure, averaged over the faces of brick-like cells in the ðx; y; tÞ space. Cell-interior

variation of transverse-averaged pressure in each spatial direction is quadratic. Cell-interior variation of transverse-

averaged velocity in each spatial direction is a sum of a constant, a linear and an exponential term. Due to the

introduction of delayed coefficients, the exponential functions are to be evaluated only once at each time step. The semi-

implicit scheme has inherent upwinding. Results of applications to several test problems show that the scheme is very

robust and leads to a second-order error. As expected in such coarse-mesh schemes, even relatively large size cells lead

to small errors. Extension to three dimensions is straightforward.
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1. Introduction

A number of coarse-mesh numerical schemes, specifically targeted to solve problems over large com-

putational domains, have been developed over the last three decades [1–18]. Characterized by an initial

investment of human effort – now greatly reduced due to the availability of software for algebraic ma-

nipulations – these schemes yield numerical solutions with comparable accuracy in less CPU time than

those obtained with other, more conventional, approaches. Typically, this efficiency is achieved by using a

coarser mesh size than those required by other schemes. Hence, for given mesh size, a second-order coarse-

mesh scheme is likely to lead to smaller error than a second-order finite-difference scheme. Coarse-mesh
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schemes do have some limitations. For example, those that rely on the transverse-integration procedure

(explained in Section 2) are restricted to physical domains with boundaries parallel to one of the axis, i.e, to

geometries that can be filled with brick-like cells. However, as shown by the experience of the nuclear

industry, these schemes provide enough savings in CPU time to justify their development, even if they are

applicable to only a limited set of problems. Moreover, efforts are also underway to relax these restrictions

and hence make the coarse-mesh methods applicable to even larger set of problems.

Nodal methods [19] are a subset of coarse-mesh methods. A nodal scheme is developed by approximately

satisfying the governing differential equations on finite size brick-like elements that are obtained by dis-
cretizing the space of independent variables. In the early development of nodal schemes these brick-like

elements were referred to as nodes – hence the schemes were called nodal. Nodes in nodal methods are

however similar to the elements of the finite element approach, i.e., they are finite volumes – and not points –

in the space of independent variables. This is often a source of confusion since ‘‘node’’ is already used in the

finite difference and finite volume methods to refer to a ‘‘point’’ in space. To avoid this confusion we will

refer to the finite size brick-like volume in the space–time domain as a cell. (Consequently, nodal integral

approach has also been called the ‘‘cell-analytic’’ approach [13].)

As in the space–time finite element method (FEM), time in the nodal approach may be treated in the
same manner as any spatial direction. Nuclear industry has taken full advantage of developments in coarse-

mesh methods, and consequently, they are the workhorse of the nuclear industry�s neutron diffusion and

neutron transport codes [1–5,8]. A review of nodal methods, developed and used by the nuclear industry, is

given by Lawrence [11]. Coarse-mesh schemes have also been developed for fluid flow and heat transfer

problems [7,9,12,16,17]. Other branches of science and engineering have also taken advantage of similar

approaches to develop efficient schemes [15,19]. Nodal methods, as a general class of computational

schemes, are discussed by Hennert [19]. A comparison of nodal schemes and exact finite difference schemes

has appeared recently [20]. A brief survey of coarse-mesh methods is given below.
Partial current balance method (PCBM) [1,2], developed for multi-group neutron diffusion equations,

utilizes multidimensional Green�s function with nearest neighbor coupling to arrive at a set of discrete

equations. PCBM results in a large number of discrete unknowns per cell. Later, because of the simplicity in

development, transverse integration procedure (TIP) became the primary step in the development of new

coarse mesh methods. This procedure leads to numerical schemes with smaller number of discrete un-

knowns per cell when compared with PCBM. Built upon the TIP, a nodal Green’s function method (NGFM)

was developed to solve the multi-group neutron diffusion equations [3,4]. The locally defined Green�s
functions were first applied to fluid flow problem in the nodal Green’s tensor method (NGTM) [6,7]. Later,
the nodal integral method (NIM) was developed for the steady-state [9] and time-dependent [12] Navier–

Stokes equations. Application of the NIM – also known as nodal analytical or cell analytic method – to the

neutron diffusion problem [8] and fluid flow problems [9] is mathematically equivalent to the NGTM. Since

Green�s function is not needed in the NIM, it is simpler to develop and implement than NGTM. NIM was

applied to the steady-state Boussinesq equations for natural convection, and to several steady-state in-

compressible flow problems [8–10]. Esser and Witt [16] developed a nodal scheme for the two-dimensional,

vorticity-stream function formulation of the Navier–Stokes equations. This development – that leads to

inherent upwinding in the numerical scheme – however cannot be easily extended to three dimensions. NIM
was also developed and applied to the time-dependent heat conduction problem [12]. Michael et al. [17]

developed a second- and a third-order NIM for the convection–diffusion equation, and compared the re-

sults with those obtained using the LECUSSO scheme [21]. They showed that the nodal integral method

achieved the same level of accuracy with significantly less CPU time than the very efficient LECUSSO

scheme [17].

As mentioned above, nodal schemes have been developed for the Navier–Stokes equations. Though

highly innovative, those early applications did not take full advantage of the potential that the nodal

approach offers. Consequently, these schemes for the Navier–Stokes equations can be further improved. To
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lay down the groundwork for the scheme developed in Section 3, pertinent features of the nodal integral

scheme are outlined in the following section. Past applications to the Navier–Stokes equations are also

discussed, leading to suggestions for improvements.

2. Background

Steps essential to the NIM are outlined briefly in Section 2.1. Issues relevant to the treatment of the
nonlinear terms, and specifically those relevant to the Navier–Stokes equations, are separately discussed in

Section 2.2, leading to the modified scheme developed in Section 3.

2.1. Nodal integral method and transverse integration procedure

In general, development of a nodal integral method can be split into the following four steps:

(a) After discretizing the space–time domain into brick-like cells, each PDE is reduced to a set of ODEs by

applying the transverse integration procedure (TIP) over a cell. The dependent variables in these ODEs

are referred to as transverse-averaged variables.

(b) These ODEs are split into homogeneous and inhomogeneous (also called, pseudo-source) terms. After

making certain assumptions about the homogeneous and inhomogeneous terms, the ODEs are solved

analytically for local solution within each cell using the discrete values of the transverse-averaged vari-
ables at the cell surfaces as boundary conditions. The transverse-averaged variables evaluated at the cell

surfaces are the discrete variables of the nodal scheme.

(c) Continuity of these transverse-averaged variables (and their derivatives for second-order ODEs) is im-

posed on cell boundaries to obtain a set of discrete equations.

(d) Constraint conditions are next used to eliminate the coefficients of expansion of the pseudo-source

terms (identified in step (b)) to obtain a set of discrete equations with number equal to the number

of discrete unknowns per cell.

Steps (a) and (b) are further explained below.
In the TIP, after discretizing the space–time domain of independent variables (X ; Y ; T ) into finite size

computational cells of size (Dx� Dy � Dt), cell specific local coordinates (x; y; t), with origin at the center of

the cell, are introduced. Hence, with Dx ¼ 2a; Dy ¼ 2b and Dt ¼ 2s, the cell is given by �ai 6 x6 þ ai;
�bj 6 y6 þ bj; �sk 6 t6 þ sk. See Fig. 1. Each governing PDE is then integrated locally over the space–

time cell over all independent variables except one, leading to an ODE. Repeating this process with different

combinations of independent variables leads to a set of ODEs for each PDE. The ODEs are for transverse-

averaged variables. For example, an ODE will be obtained for �uuxti;j;kðyÞ – the u velocity, uðx; y; tÞ, transverse-
averaged locally over the cell in x and t directions – defined as

�uuxti;j;kðyÞ �
1

4ab

Z a

�a

Z s

�s
ui;j;kðx; y; tÞdxdt; ð2:1Þ

where the overbar and the symbols that follow (�xt) indicate the independent variables over which the local

averaging has been carried out (extension to three dimensions is straightforward). The discrete unknowns

of the nodal approach are the transverse-averaged variables evaluated at the cell-surfaces. Or, in other

words the discrete unknowns are the unknowns (uðx; y; tÞ, vðx; y; tÞ and pðx; y; tÞ for the Navier–Stokes

equations) averaged over surfaces of the space–time cells. For example, one of the discrete unknown is the

transverse-averaged variable �uuxti;j;kðyÞ evaluated at y ¼ b, i.e., �uuxti;j;kðy ¼ bÞ � �uuxti;j;k (see Fig. 1).
While step (a) is common to almost all nodal integral methods, step (b) is crucial in understanding the

difference between different nodal integral approaches, and is further elaborated here. In general, ODEs

obtained after the TIP do not have analytical solutions. The basic idea behind NIM is to analytically solve in
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each cell asmuch of the transverse-integratedODEs as possible [9,14] for a homogeneous solution, and obtain

(approximate) particular solutions corresponding to the remaining terms. Hence, each ODE is split into two

parts: a group of terms that are retained on the left-hand side, and remaining terms that are written on the
right-hand side. Splitting the ODEs into terms retained on the left-hand side and those kept on the right-hand

side is not arbitrary. In general, only the terms of the ODEs that are linear in the dependent variable to be

solved using that ODE, are retained on the left-hand side. The nonlinear terms, as well as linear terms that

involve other dependent variables, are lumped together on the right-hand side of the equation as inhomoge-

neous terms (traditionally called the pseudo-source term). Solutions to these ODEs are then written as the sum

of homogeneous and particular solutions. The homogeneous part of the solution of these ODEs then consists

of polynomial, trigonometric, exponential or other functions. Since this (homogeneous) component of the

solution is obtained by analytically solving a part of the transverse-averaged ODEs, it is likely to capture
characteristics that are directly relevant to the problem. The homogeneous solution can thus be considered to

be a ‘‘finite set of natural basis functions’’ specific to the problem – or at least to a part of the problem. This

featuremakes nodal analyticmethoddistinct fromother numericalmethods – such asFourier, collocation and

spectral etc. – inwhich ‘‘basis functions’’ independent of the problem at hand are usually employed. Particular

solutions, corresponding to the terms that are lumped on the right-hand side in the pseudo-source term, are

obtained after expanding the pseudo-source terms in a set of complete basis functions and truncating at a

desired level. Hence, the terms lumped in the pseudo-source terms (and the physical process that these terms

represent) are less accurately capturedby the numerical scheme than those that contribute to the homogeneous
part of the solution.Consequently, it is desirable to retain asmany termson the left-hand side in the transverse-

averaged ODEs as possible. This point is further elaborated in [14].

Fig. 1. Domain discretization for the nodal integral method. (a) Discretization of the spatial domain into nx � ny cells. (b) Space–time

cell ði; j; kÞ and local coordinate system. (c) Details of the local coordinates in cell ði; jÞ in x–y plane.
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In step (c), the general solution within each cell – consisting of the homogeneous and particular parts – is

used to obtain the set of discretized equations. The coefficients of expansion of the pseudo-source terms,

that appear in the particular solutions, are initially unknown. They are eliminated in step (d), leading to a

set of discrete algebraic equations.

2.2. NIM for nonlinear equations and past applications to the Navier–Stokes equations

In early applications of the NIM, the nonlinear terms were treated as part of the pseudo-source terms

[9,12]. For example, in the NIM developed for the time-dependent, two-dimensional Navier–Stokes (N–S)

equations, the nonlinear convection terms as well as the pressure gradient term were lumped into the

pseudo-source term [12]. In addition, dogged by the absence of pressure in the continuity equation, normal

stress, instead of pressure, was used as an independent variable. Consequently, the standard continuity and
the momentum equations for the two-dimensional, time-dependent, incompressible flow, after the trans-

verse integration were transformed into the following set of ODEs [9,12]:

d�uuytðxÞ
dx

¼ �uuyt
3 ðcontinuity equation integrated over y and tÞ; ð2:2Þ

d�vvxtðyÞ
dy

¼ �uuxt
3 ðcontinuity equation integrated over x and tÞ; ð2:3Þ

d�uuxyðtÞ
dt

¼ �uuxy
1 ðx momentum equation integrated over x and yÞ; ð2:4Þ

d2�uuxtðyÞ
dy2

¼ �uuxt
1 ðx momentum equation integrated over x and tÞ; ð2:5Þ

d�ssytx ðxÞ
dx

¼ �uuyt
4 ðx momentum equation integrated over y and tÞ; ð2:6Þ

d�vvxyðtÞ
dt

¼ �uuxy
2 ðy momentum equation integrated over x and yÞ; ð2:7Þ

d2�vvytðxÞ
dx2

¼ �uuyt
2 ðy momentum equation integrated over y and tÞ; ð2:8Þ

d�ssxty ðyÞ
dy

¼ �uuxt
4 ðy momentum equation integrated over x and tÞ; ð2:9Þ

where the normal stresses are defined as

sx � P � l
ou
ox

; ð2:10Þ

sy � P � l
ov
oy

: ð2:11Þ

Terms not explicit on the left-hand side of the transverse-averaged equations [(2.2)–(2.9)] were lumped in

the pseudo-source (u) terms on the right-hand side.
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These ODEs were solved to obtain cell-interior solutions for the transverse-averaged variables. For

example, Eq. (2.5) led to a quadratic (local) variation in y for the transverse-averaged u velocity, �uuxtðyÞ; and
Eq. (2.2) led to a linear variation in x for the transverse-averaged u velocity, �uuytðxÞ. The formulation

consequently led to asymmetries in the local solutions of transverse-averaged u (and v) velocities in the x

and y directions. Moreover, lumping all the convection terms, when solving the momentum equation, into

the right-hand side, also meant that the homogeneous part of the analytical solution captured only the

diffusion process – and not convection.

Hence, there are three desirable features in any new coarse-mesh nodal numerical scheme for the N–S
equations: (1) local analytical solutions that are more representative of the N–S equations and the physical

processes they represent; (2) formulation in terms of only the primitive variables; and (3) a numerical

scheme that is symmetric in all spatial directions. A recipe for the first of these is given in the following

paragraph, followed by suggestions on how to include the second and third features.

Motivated by the desire to ‘‘exactly’’ solve more of the ODEs, i.e., to obtain homogeneous solution to a

larger fraction of the ODEs, a modified nodal integral method (MNIM) was proposed by Rizwan-uddin

[14]. The method proposed was successfully applied to Burgers� equation [14], and led to lower CPU time

when compared with the conventional NIM. The new approach was further modified later and applied to
the 2D Burgers� equations [15]. The ideas introduced are similar to the concept of ‘‘delayed coefficients’’ in

which part of the nonlinear convection term is evaluated in terms of the u and v velocities at the previous

time step [22]. Thus, in the MNIM for the 2D Burgers� equations, the nonlinear convection term, in its

approximated form, is retained on the left-hand side of the ODE, and the homogeneous part of the solution

is written for the diffusion as well as the convection term. That is, instead of Eq. (2.2) for �uuytðxÞ and Eq. (2.5)

for �uuxtðyÞ – which would, respectively, lead to linear and quadratic local transverse-averaged velocities – two

ODEs are, respectively, obtained by locally transverse-averaging the x-momentum equation over x and t,

and over y and t. These equations are of the form

m
d2�uugtðlÞ

dl2
� r

d�uugtðlÞ
dl

¼ �uugt
1 ; ð2:12Þ

where g ¼ y; x, l ¼ x; y and r ¼ u0; v0. Consequently, a larger part of the transverse-integrated ODE is

analytically inverted when these equations are solved for �uuytðxÞ and �uuxtðyÞ leading to local cell-interior

solutions of the constant+ linear+ exponential form

�uugtðlÞ ¼ C3 e
rl=m þ �uugt

1 l þ C4: ð2:13Þ

These local, cell-interior solutions capture the effect of diffusion as well as convection, and are more rep-

resentative of the physics than the linear or quadratic local variations for the transverse-averaged velocities
used in earlier development of the NIM. Solution of the 1-D [14] and 2-D [15] Burgers� equations with the

modified nodal approach – in which the convection term is retained on the left-hand side and contributes to

the homogeneous part of the analytical solution – showed that the resulting analytical solution for the cell

interior variation is capable of capturing steep variations within large size spatial cells. Moreover, the

numerical scheme that results also has inherent upwinding.

A nodal scheme for the Navier–Stokes equations only in terms of primitive variables can be developed

by using the Poisson equation for pressure [23]. Solving the (Poisson) continuity equation for pressure

leaves the two momentum equations to be solved for the velocities. Consequently, this also eliminates the
asymmetries between different spatial directions. (The asymmetry between �uuytðxÞ and �uuxtðyÞ in the original

development [9] resulted from the fact that continuity equation in its primitive form was used to solve for
�uuytðxÞ, while the x-momentum equation was solved to determine �uuxtðyÞ.) Michael and Dorning [24,25] have

developed a nodal scheme for the Navier–Stokes equations in primitive variables recently. This scheme is

similar in its treatment of the transverse-averaged velocities to the scheme developed below. However,
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motivated by the desire to develop scheme that could be back-fitted in some existing production level codes,

approximations were introduced to develop discrete equations for a single, cell-averaged pressure. The

approach in the current work does not rely on similar approximations, and two discrete equations are

retained for the two transverse-averaged pressures for each cell.

The modified nodal scheme for the Navier–Stokes equations – in which the continuity equation is re-

placed by the Poisson equation for pressure – is developed in Section 3. Corresponding boundary condi-

tions are developed in Section 4. Numerical results are presented in Section 5. Concluding remarks are in

Section 6.

3. Modified nodal integral method for Navier–Stokes equations

Two-dimensional, time-dependent, incompressible, isothermal Navier–Stokes equations in primitive

variable form are

ou
oX

þ ov
oY

¼ 0; ð3:1Þ

ou
oT

þ u
ou
oX

þ v
ou
oY

� m
o2u
oX 2

�
þ o2u
oY 2

�
þ 1

q
op
oX

þ bX ðX ; Y ; T Þ ¼ 0; ð3:2Þ

ov
oT

þ u
ov
oX

þ v
ov
oY

� m
o2v
oX 2

�
þ o2v
oY 2

�
þ 1

q
op
oY

þ bY ðX ; Y ; T Þ ¼ 0; ð3:3Þ

where bX ðX ; Y ; T Þ and bY ðX ; Y ; T Þ represent volumetric sources such as gravity. To develop a numerical

scheme, for well-known reasons [26], very often a Poisson equation for pressure is used instead of the

continuity equation, Eq. (3.1). Manipulating Eqs. (3.2) and (3.3), the Poisson equation for pressure is given

by

1

q
o2p
oX 2

�
þ o2p
oY 2

�
¼ � ou

oX

� �2

� 2
ou
oY

ov
oX

� ov
oY

� �2

� obX
oX

� obY
oY

� oD
oT

�
þ u

oD
oX

þ v
oD
oY

� m
o2D
oX 2

� m
o2D
oY 2

�
;

ð3:4Þ

where the dilatation term D is given by

D � ou
oX

þ ov
oY

: ð3:5Þ

Note that Eq. (3.4) is derived from the two scalar momentum equations, and must be combined with the

continuity equation before it is used to solve for pressure. Since the continuity equation is simply D ¼ 0,

setting the square bracket on the RHS of Eq. (3.4) to zero leads to an equation that can be used to solve for

pressure. However, several authors have pointed out that setting D in Eq. (3.4) identically to zero may lead

to an unstable numerical scheme [26,27]. Hence, while solving the Poisson equation for pressure, retention

of, for example, the temporal derivative of the local dilatation is considered essential for the convergence of

a numerical scheme. Moreover, a discretization of the dilatation term D consistent with the continuity

equation is believed to be important to ensure the convergence of the numerical scheme. Imposing conti-
nuity equation requires the entire square bracket on the RHS of Eq. (3.4) to be set equal to zero. However,

to simplify and simultaneously retain the stability of the numerical scheme, we replace the square bracket

on the RHS of Eq. (3.4) with (D=2s) evaluated at the current time step.
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3.1. Transverse integration procedure and the set of ODEs

In the nodal method, the space–time domain ðX ; Y ; T Þ is first discretized into cells (i; j; k) of size

ð2ai � 2bj � 2skÞ with cell-centered local coordinates (�ai 6 x6 ai; �bj 6 y6 bj; �sk 6 t6 sk). Fig. 1 shows

the discretized spatial domain, a space–time cell, and the local coordinates in a cell with origin located at

the center of the cell. As a prelude to the development of the numerical scheme, the momentum equations

are re-written in terms of the local coordinate system in the following form:

ou
ot

þ up

ou
ox

þ vp
ou
oy

� m
o2u
ox2

�
þ o2u

oy2

�
¼ � 1

q
op
ox

� bxðx; y; tÞ � ðu� upÞ
ou
ox

� ðv� vpÞ
ou
oy

; ð3:6Þ

ov
ot

þ up

ov
ox

þ vp
ov
oy

� m
o2v
ox2

�
þ o2v
oy2

�
¼ � 1

q
op
oy

� byðx; y; tÞ � ðu� upÞ
ov
ox

� ðv� vpÞ
ov
oy

; ð3:7Þ

where up and vp are, respectively, the cell-averaged u and v velocities at the previous time step. Convection

terms based on cell-averaged velocities at the previous time step have been added to both sides of Eqs. (3.2)

and (3.3) to obtain Eqs. (3.6) and (3.7). The reason for writing the momentum equations in this form was

alluded to in the previous section (delayed coefficients), and it will become further obvious in the following

sections. By applying the local transverse integration procedure to Eqs. (3.4), (3.6) and (3.7), eight trans-

verse-integrated ordinary differential equations are obtained below.

Applying the transverse-integration operator

1

4aisk

Z sk

�sk

Z ai

�ai

dxdt

to Eqs. (3.4), (3.6) and (3.7), respectively, yields

d2�ppxtðyÞ
dy2

¼ �SSxt
1 ðyÞ; ð3:8Þ

vp
d�uuxtðyÞ

dy
� m

d2�uuxtðyÞ
dy2

¼ �SSxt
2 ðyÞ; ð3:9Þ

vp
d�vvxtðyÞ

dy
� m

d2�vvxtðyÞ
dy2

¼ �SSxt
3 ðyÞ; ð3:10Þ

where the cell-specific subscripts (i; j; k) on independent variables have been omitted, and

�//xt
i;j;kðyÞ �

1

4aisk

Z sk

�sk

Z ai

�ai

/i;j;kðx; y; tÞdxdt; / ¼ u; v; p: ð3:11Þ

�//yt
i;j;kðxÞ and �//xy

i;j;kðtÞ are similarly defined. Terms not explicit in Eqs. (3.8)–(3.10) are lumped into the right

hand as pseudo-source terms:

�SSxt
1 ðyÞ � � 1

4aisk

Z sk

�sk

Z ai

�ai

dxdt
o2p
ox2

 
þ q

ou
ox

� �2

þ 2q
ou
oy

ov
ox

þ q
ov
oy

� �2

þ q
obx
ox

þ q
oby
oy

þ q
oD
ot

�
þ u

oD
ox

þ v
oD
oy

� m
o2D
ox2

� m
o2D
oy2

�!
; ð3:12Þ
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�SSxt
2 ðyÞ � � 1

4aisk

Z sk

�sk

Z ai

�ai

dxdt
ou
ot

�
þ u

ou
ox

þ ðv� vpÞ
ou
oy

� m
o2u
ox2

þ 1

q
op
ox

þ bx

�
ð3:13Þ

and

�SSxt
3 ðyÞ � � 1

4aisk

Z sk

�sk

Z ai

�ai

dxdt
ov
ot

�
þ u

ov
ox

þ ðv� vpÞ
ov
oy

� m
o2v
ox2

þ 1

q
op
oy

þ by

�
: ð3:14Þ

There are no approximations introduced up to this stage of the development.

The inhomogeneous pseudo-source terms in Eqs. (3.8)–(3.10) are then expanded in Legendre polynomials.

Here, the expansion is truncated at the zeroth order, which is consistentwith the goal of a second-order scheme

[9]. (In general, truncating at higher order, in conjunction with other consistent approximations, leads

to numerical scheme of order higher than second.) The above process yields

d2�ppxtðyÞ
dy2

¼ �SSxt
1 ; ð3:15Þ

vp
d�uuxtðyÞ

dy
� m

d2�uuxtðyÞ
dy2

¼ �SSxt
2 ð3:16Þ

and

vp
d�vvxtðyÞ

dy
� m

d2�vvxtðyÞ
dy2

¼ �SSxt
3 : ð3:17Þ

Note that it is only the absence of the argument that differentiates �SSxt
1 ðyÞ in Eq. (3.8) from �SSxt

1 in Eq. (3.15).

Latter is the zeroth-order Legendre expansion of the former.

Similarly, applying the transverse-integration operator

1

4bjsk

Z sk

�sk

Z bj

�bj

dy dt;

to Eqs. (3.4), (3.6) and (3.7), and approximating the pseudo-source terms by constants, result in

d2�ppytðxÞ
dx2

¼ �SSyt
1 ; ð3:18Þ

up

d�uuytðxÞ
dx

� m
d2�uuytðxÞ

dx2
¼ �SSyt

2 ð3:19Þ

and

up

d�vvytðxÞ
dx

� m
d2�vvytðxÞ
dx2

¼ �SSyt
3 ; ð3:20Þ

where the definitions of the pre-truncated pseudo-source terms are

�SSyt
1 ðxÞ � � 1

4bjsk

Z sk

�sk

Z bj

�bj

dy dt
o2p
oy2

 
þ q

ou
ox

� �2

þ 2q
ou
oy

ov
ox

þ q
ov
oy

� �2

þ q
obx
ox

þ q
oby
oy

þ q
oD
ot

�
þ u

oD
ox

þ v
oD
oy

� m
o2D
ox2

� m
o2D
oy2

�!
; ð3:21Þ
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�SSyt
2 ðxÞ � � 1

4bjsk

Z sk

�sk

Z bj

�bj

dy dt
ou
ot

�
þ v

ou
oy

þ ðu� upÞ
ou
ox

� m
o2u
oy2

þ 1

q
op
ox

þ bx

�
ð3:22Þ

and

�SSyt
3 ðxÞ � � 1

4bjsk

Z sk

�sk

Z bj

�bj

dy dt
ov
ot

�
þ v

ov
oy

þ ðu� upÞ
ov
oy

� m
o2v
oy2

þ 1

q
op
oy

þ by

�
: ð3:23Þ

Next, applying the operator,

1

4aibj

Z ai

�ai

Z bj

�bj

dxdy;

to Eqs. (3.5) and (3.6), and expanding and truncating the pseudo-source terms yield,

d�uuxyðtÞ
dt

¼ �SSxy
2 ; ð3:24Þ

d�vvxyðtÞ
dt

¼ �SSxy
3 ; ð3:25Þ

where the pre-truncated pseudo-source terms – �SSxy
2 ðtÞ and �SSxy

3 ðtÞ – are given by

�SSxy
2 ðtÞ � � 1

4aibj

Z ai

�ai

Z bj

�bj

dxdy u
ou
ox

�
þ v

ou
oy

� m
o2u
ox2

� m
o2u
oy2

þ 1

q
op
ox

þ bx

�
; ð3:26Þ

�SSxy
3 ðtÞ � � 1

4aibj

Z ai

�ai

Z bj

�bj

dxdy u
ov
ox

�
þ v

ov
oy

� m
o2v
ox2

� m
o2v
oy2

þ 1

q
op
oy

þ by

�
: ð3:27Þ

Note that due to the absence of a time derivative, the pressure equation leads to only two ODEs. Eqs.

(3.15)–(3.20), (3.24) and (3.25) form the set of eight ODEs that will be solved to develop the set of discrete
equations.

The reason behind the introduction of the convection term based on the (known) cell-averaged velocity

at the previous time step should now be obvious. These terms are linear, and hence allow the convection

term – albeit a linear one – to contribute to the homogeneous solution of the transverse averaged mo-

mentum equations. A brief discussion of the treatment of the nonlinear term in nodal analytical schemes is

given in the following section. This section can be skipped without any loss of continuity.

3.2. Discussion of the treatment of the nonlinear terms

First nodal integral scheme for the Navier–Stokes equations [9] was developed with only the diffusion

terms contributing to the homogeneous solutions of the transverse-averaged differential equations. Hence,

except for the diffusion term, all other terms in the momentum equations were lumped in the pseudo-source
terms. See, for example, Eqs. (2.5) and (2.8). Cognizant of the advantages in obtaining homogeneous so-

lution of the transverse-integrated momentum equations that locally capture the diffusion as well as the

convection process, it is desirable, when the transverse averaged equations are split for the homogenous and

particular components of the solution, to retain the convection terms on the left-hand side. However,

convection terms, being nonlinear, do not lend themselves easily to analytical solutions. Hence, following

the procedure for the convection–diffusion equation – in which the velocity field is assumed known, and
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therefore the convection term, being linear, can be retained on the left-hand side [13] – a modified nodal

scheme for the 1-D Burgers� equation was developed by approximating the nonlinear convection term

uou=ox by u0ou=ox, where the velocity u0 is the (unknown) cell-averaged u velocity at the current time step.

The nonlinearity was resolved through an iterative process. However, this approach was computationally

expensive since the unknown cell-averaged velocities, u0 and v0, appear as argument of exponential func-

tions that must be repeatedly evaluated during the iteration process.

To avoid this computational overhead, the scheme was further modified, and also applied to the 2-D

Burgers� equation [15]. To reduce the computational burden, convection terms based on cell-averaged ve-
locities at the previous time step are added to both sides of the transverse-integratedmomentum equations [15].

For example, the term vpou=oy is added to both sides of the u momentum equation before it is transverse-

integrated in the x and t directions, where vp is the cell-averaged v velocity at the previous time step. The

nonlinear term,
R R

vou=oy dxdt, is moved to the right-hand side and lumped into a modified pseudo-source

term. This is the procedure followed for the Navier–Stokes equations in the previous section. It led to Eqs.

(3.16), (3.17), (3.19) and (3.20), which can be solved analytically within each cell. Solutions of these equations

for the cell-interior variations of the velocity are of constant+ linear+ exponential form. Clearly, this func-

tional dependence can more accurately capture a wider range of cell-interior variations than the quadratic
variation that resultswhen all the convection terms are lumped into the pseudo-source term.The coefficients in

the resulting scheme depend on the velocities up and vp, and thus the scheme possesses inherent upwinding.

Upwinding, however, is based on velocities at the previous time step. Thus, by introducing the cell-averaged

velocities at the previous time step, the exponentials need to be evaluated only once for each time step rather

than once every iteration, which significantly reduces the computational burden [15].

3.3. Transverse-averaged ODEs

The final set of eight transverse-integrated ordinary differential equations is:

d2�ppxtðyÞ
dy2

¼ �SSxt
1 ; ð3:28Þ

d2�ppytðxÞ
dx2

¼ �SSyt
1 ; ð3:29Þ

vp
d�uuxtðyÞ

dy
� m

d2�uuxtðyÞ
dy2

¼ �SSxt
2 ; ð3:30Þ

vp
d�vvxtðyÞ

dy
� m

d2�vvxtðyÞ
dy2

¼ �SSxt
3 ; ð3:31Þ

up

d�uuytðxÞ
dx

� m
d2�uuytðxÞ

dx2
¼ �SSyt

2 ; ð3:32Þ

up

d�vvytðxÞ
dx

� m
d2�vvytðxÞ
dx2

¼ �SSyt
3 ; ð3:33Þ

d�uuxyðtÞ
dt

¼ �SSxy
2 ð3:34Þ
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and

d�vvxyðtÞ
dt

¼ �SSxy
3 ; ð3:35Þ

where �ai 6 x6 ai; �bj 6 y6 bj and �sk 6 t6 sk; cell-specific subscripts (i; j; k) have been omitted; and the

right-hand sides represent the truncated expansions of the pseudo-source terms. Complete symmetry exists

between u and v velocities, and between x and y directions in this formulation.

3.4. Local solutions

These ODEs are solved locally within each cell. The local solution of the ODEs for transverse-integrated

pressure is quadratic. For example, the solution of Eq. (3.28) is

�ppxtðyÞ ¼
�SSxt
1

2
y2 þ C1y þ C2: ð3:36Þ

A similar solution can be written for �ppytðxÞ. The local solution for �uuxtðyÞ (and other transverse-integrated
velocities (�uuytðxÞ; �vvxtðyÞ; �vvytðxÞ) is of the form

�uuxtðyÞ ¼ C3 e
fvpyg=m þ �SSxt

2 y þ C4: ð3:37Þ

The solutions for �uuxyðtÞ and �vvxyðtÞ are linear in time. For example,

�uuxyðtÞ ¼ �SSxy
2 t þ C5: ð3:38Þ

Recognizing that the discrete unknowns associated with the cell ði; j; kÞ are going to be the surface-

averaged variables on cell surfaces, the constants Ci ði ¼ 1; 2; . . .Þ in the above equations are eliminated in

favor of these discrete unknowns by imposing boundary conditions, or initial conditions, on cell surfaces

normal to the independent variable. For example, boundary conditions for Eq. (3.36) are

�ppxti;j;kðy ¼ þbjÞ ¼ �ppxti;j;k; �ppxti;j;kðy ¼ �bjÞ ¼ �ppxti;j�1;k: ð3:39aÞ

See Fig. 2. The resulting expressions for �ppxti;jðyÞ; �uuxti;jðyÞ; �vvxti;jðyÞ; �uuxyi;jðtÞ and �vvxyi;jðtÞ are

�ppxti;jðyÞ ¼
�SSxt
1i;j

2
y2
	

� b2
j



þ 1

2bj
ð�ppxti;j � �ppxti;j�1Þy þ

1

2
ð�ppxti;j þ �ppxti;j�1Þ; ð3:39bÞ

�uuxti;jðyÞ ¼
eð1=2ÞRevi;jð�2bj �SS

xt
2i;j þ �uuxti;jvpi;j � �uuxti;j�1vpi;jÞ

vpi;jð�1þ eRevi;jÞ exp
vpi;jy

m

n o
þ 1

vpi;j
�SSxt
2i;jy

þ
bj�SS

xt
2i;jð1þ eRevi;jÞ � �uuxti;jvpi;j þ �uuxti;j�1vpi;je

Revi;j

vpi;jð�1þ eRevi;jÞ ; ð3:40Þ

�vvxti;jðyÞ ¼
eð1=2ÞRevi;jð�2bj �SS

xt
3i;j þ �vvxti;jvpi;j � �vvxti;j�1vpi;jÞ

vpi;jð�1þ eRevi;jÞ exp
vpi;jy

m

n o
þ 1

vpi;j
�SSxt
3i;jy

þ
bj�SS

xt
3i;jð1þ eRevi;jÞ � �vvxti;jvpi;j þ �vvxti;j�1vpi;je

Revi;j

vpi;jð�1þ eRevi;jÞ ; ð3:41Þ

�uuxyðtÞ ¼ �SSxy
2 ðt þ sÞ þ �uuxyk�1; ð3:42Þ
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and

�vvxyðtÞ ¼ �SSxy
3 ðt þ sÞ þ �vvxyk�1; ð3:43Þ

where the local Reynolds number in the y direction is defined as

Revi;j �
2bjvpi;j

m
; ð3:44Þ

and the subscript k for current time step variables has been omitted. Solution for �ppyti;jðxÞ, �uuyti;jðxÞ and �vvyti;jðxÞ can
be obtained by interchanging x and y, replacing bj by ai, vpi;j by upi;j, Revi;j by Reui;j and (i; j� 1) by (i� 1; j)
in Eqs. (3.39b), (3.40) and (3.41), respectively. Similar to Revi;j, Reui;j is defined as

Reui;j �
2aiupi;j

m
: ð3:45Þ

This completes steps (a) and (b) discussed in Section 2.1. Local solutions obtained above are used in the

following section to derive the set of discrete equations (step c).

3.5. Set of discrete equations in terms of the pseudo-source terms

A set of discrete equations is obtained by imposing continuity at cell interfaces – C0 for first order, and

C1 for second-order ODEs. For the first-order ODEs for �uuxyi;j;k and �vvxyi;j;k, the algebraic equations are obtained

by simply evaluating the local solutions for �uuxyðtÞ and �vvxyðtÞ – Eqs. (3.42) and (3.43) – at t ¼ s. For the

second-order ODEs, C0 continuity of the transverse averaged variable is (automatically) imposed by simply

using the same notation to identify the discrete variable at the interface between the two neighboring cells.

For example, for transverse averaged pressure between cells (i; j; k) and (i; jþ 1; k) this means

�ppxti;j;kðy ¼ bjÞ




i;j;k

¼ �ppxti;jþ1;kðy ¼ � bjþ1Þ




i;jþ1;k

� �ppxti;j;k: ð3:46Þ

See Fig. 2 for details. Then, imposing the continuity of the derivative (C1) at the cell interfaces yields a three-

point scheme. Again, for transverse averaged pressure between cells (i; j; k) and (i; jþ 1; k), this leads to

Fig. 2. Continuity of transverse averaged pressure between cell ði; jÞ and ði; jþ 1Þ.
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d�ppxti;j;k
dy

ðy ¼ bjÞ






i;j;k

¼
d�ppxti;jþ1;k

dy
ðy ¼ � bjþ1Þ







i;jþ1;k

: ð3:47Þ

Eq. (3.47) is the discrete equation for pressure �ppxti;j;k. (See Eq. (3.48) below). Repeating the same process for

the other variables, a total of six coupled, algebraic equations per cell for �uuxti;j;k; �vvxti;j;k; �ppxti;j;k; �uuyti;j;k; �vvyti;j;k; �ppyti;j;k
are derived in terms of the pseudo-source terms, S�s.

Eight discrete algebraic equations thus obtained are

ðbj þ bjþ1Þ
2bjbjþ1

�ppxti;j �
1

2bj
�ppxti;j�1 �

1

2bjþ1

�ppxti;jþ1 þ bj�SS
xt
1i;j þ bjþ1

�SSxt
1i;jþ1 ¼ 0; ð3:48Þ

ðai þ aiþ1Þ
2aiaiþ1

�ppyti;j �
1

2ai
�ppyti�1;j �

1

2aiþ1

�ppytiþ1;j þ ai �SS
yt
1i;j þ aiþ1

�SSyt
1iþ1;j ¼ 0; ð3:49Þ

A21�uuxti;j�1 þ ðA21 þ A22Þ�uuxti;j þ A22�uuxti;jþ1 þ A23
�SSxt
2i;j þ A24

�SSxt
2i;jþ1 ¼ 0; ð3:50Þ

A21�vvxti;j�1 þ ðA21 þ A22Þ�vvxti;j þ A22�vvxti;jþ1 þ A23
�SSxt
3i;j þ A24

�SSxt
3i;jþ1 ¼ 0; ð3:51Þ

A51�uu
yt
i�1;j þ ðA51 þ A52Þ�uuyti;j þ A52�uu

yt
iþ1;j þ A53

�SSyt
2i;j þ A54

�SSyt
2iþ1;j ¼ 0; ð3:52Þ

A51�vv
yt
i�1;j þ ðA51 þ A52Þ�vvyti;j þ A52�vv

yt
iþ1;j þ A53

�SSyt
3i;j þ A54

�SSyt
3iþ1;j ¼ 0; ð3:53Þ

�uuxyi;j � �uuxyi;j;k�1 � 2s�SSxy
2i;j ¼ 0; ð3:54Þ

�vvxyi;j � �vvxyi;j;k�1 � 2s�SSxy
3i;j ¼ 0; ð3:55Þ

where, once again, the subscript k for current time step variables has been omitted, k � 1 denotes the
previous time-step values, and A21;A22; . . ., and A51;A52; . . ., are coefficients which are functions of

ai; bj; m; Reui;j and Revi;j. For example,

A21 ¼
vpi;j

mðe�Revi;j � 1Þ ; A23 ¼
2bj eRevi;j

mð1� eRevi;jÞ þ
1

vpi;j
: ð3:56Þ

Three characteristics of the numerical scheme being developed can be identified at this stage. First, the

local solution of transverse averaged velocities has a component that varies exponentially in space. These

exponential terms can capture steep spatial variation of velocities within each cell, thus, allowing the use of

coarse meshes. Second, because of the appearance of the local Reynolds number in the exponential terms,

the scheme being developed has inherent upwinding [15]. Third, local Reynolds number based only on cell-

averaged velocities at the previous time step appear as argument of the exponential terms. Hence, these

terms can be evaluated at the beginning of each time step outside the iteration loop, which significantly
reduces the computation time.

3.6. Constraint equations

Eight discrete algebraic equations (3.48)–(3.55) per cell, given in the last section, are in terms of 16

unknowns: �uuxti;j; �vvxti;j; �ppxti;j; �uuyti;j; �vvyti;j; �ppyti;j; �uuxyi;j; �vvxyi;j; �SSxt
1i;j;

�SSyt
1i;j;

�SSxt
2i;j;

�SSyt
2i;j;

�SSxy
2i;j;

�SSxt
3i;j;

�SSyt
3i;j;

�SSxy
3i;j. Thus, eight more
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equations are needed to close the set of equations (step d). Following the nodal approach [9], these are

developed next using eight constraint equations. Three constraint equations are obtained by ensuring that

the continuity and the momentum equations are satisfied over each cell in an integral sense. Applying the

cell-averaging operator,

1

8aibjsk

Z sk

�sk

Z bj

�bj

Z ai

�ai

dxdy dt;

on Eqs. (3.4), (3.6) and (3.7), respectively, yields

�SSxt
1 þ �SSyt

1 þ f1 ¼ 0; ð3:57Þ

�SSxt
2 þ �SSyt

2 þ �SSxy
2 þ f2 ¼ 0 ð3:58Þ

and

�SSxt
3 þ �SSyt

3 þ �SSxy
3 þ f3 ¼ 0; ð3:59Þ

where

f1 � q
�uuyti;j � �uuyti�1;j

2ai

 !2

þ 2q
�vvyti;j � �vvyti�1;j

2ai

 !
�uuxti;j � �uuxti;j�1

2bj

 !
þ q

�vvxti;j � �vvxti;j�1

2bj

 !2

þ q
�bbxtyi;j � �bbxtyi;j�1

2bj

 !
þ q

�bbytxi;j � �bbytxi�1;j

2ai

 !
; ð3:60Þ

f2 � ðu0 � upÞ
1

2ai
ð�uuyti;j � �uuyti�1;jÞ þ ðv0 � vpÞ

1

2bj
ð�uuxti;j � �uuxti;j�1Þ þ

1

q
1

2ai
ð�ppyti;j � �ppyti�1;jÞ þ bxytx ð3:61Þ

and

f3 � ðu0 � upÞ
1

2ai
ð�vvyti;j � �vvyti�1;jÞ þ ðv0 � vpÞ

1

2bj
ð�vvxti;j � �vvxti;j�1Þ þ

1

q
1

2bj
ð�ppxti;j � �ppxti;j�1Þ þ bxyty ð3:62Þ

and the following approximation

1

8aibjsk

Z sk

�sk

Z bj

�bj

Z ai

�ai

/ðx; y; tÞwðx; y; tÞdxdy dt


 1

8aibjsk

Z sk

�sk

Z bj

�bj

Z ai

�ai

/ðx; y; tÞdxdy dt
 !

1

8aibjsk

Z sk

�sk

Z bj

�bj

Z ai

�ai

wðx; y; tÞdxdy dt
 !

ð3:63Þ

has been used to arrive at Eqs. (3.60)–(3.62). Approximating the average of the product by product of the

averages, as above, is known to lead to a second-order error in the numerical scheme [9]. For example,

vðx; y; tÞðouðx; y; tÞ=oyÞ is locally averaged over x and t as

1

4aisk

Z sk

�sk

Z ai

�ai

vðx; y; tÞ ouðx; y; tÞ
oy

dxdt 
 �vvxtðyÞ d�uu
xtðyÞ
dy


 v0
d�uuxtðyÞ

dy
; ð3:64Þ

where v0 is the current time step cell-averaged velocity. The other five constraint equations are obtained by

imposing the condition that the cell-averaged variables be unique, independent of the order of integration, i.e.,
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�uuxty � 1

2bj

Z bj

�bj

�uuxtðyÞdy ¼ 1

2sk

Z sk

�sk

�uuxyðtÞdt � �uuxyt; ð3:65Þ

�uuytx � 1

2ai

Z ai

�ai

�uuytðxÞdx ¼ 1

2sk

Z sk

�sk

�uuxyðtÞdt � �uuxyt; ð3:66Þ

�vvxty � 1

2bj

Z bj

�bj

�vvxtðyÞdy ¼ 1

2sk

Z sk

�sk

�vvxyðtÞdt � �vvxyt; ð3:67Þ

�vvytx � 1

2ai

Z ai

�ai

�vvytðxÞdx ¼ 1

2sk

Z sk

�sk

�vvxyðtÞdt � �vvxyt; ð3:68Þ

�ppytx � 1

2ai

Z ai

�ai

�ppytðxÞdx ¼ 1

2bj

Z bj

�bj

�ppxtðyÞdy � �ppxty : ð3:69Þ

These constraint conditions are simplified after substituting the local solutions given by Eqs. (3.39a),

(3.39b), (3.40)–(3.43), and the corresponding expressions for the other dependent variables. For example,

Eq. (3.65) yields

�SSxt
2i;j

bj
vpi;j

1þ eRevi;j

eRevi;j � 1

 
� 1

v2pi;j

!
� �SSxy

2i;js � �uuxyi;j;k�1 þ �uuxti;j�1

eRevi;j

�1þ eRevi;j

�
� 1

Revi;j

�

þ �uuxti;j 1

�
� eRevi;j

�1þ eRevi;j

�
� 1

Revi;j

��
¼ 0: ð3:70Þ

This can be rewritten as

A91
�SSxt
2i;j � �SSxy

2i;js � �uuxyi;j;k�1 þ A92�uuxti;j�1 þ ð1� A92Þ�uuxti;j ¼ 0; ð3:71Þ

where the definitions of A91 and A92 are obvious from the comparison of Eqs. (3.70) and (3.71). Similarly,

Eqs. (3.66)–(3.68) yield the following equations:

Aa1
�SSyt
2i;j � �SSxy

2i;js � �uuxyi;j;k�1 þ Aa2�uu
yt
i�1;j þ ð1� Aa2Þ�uuyti;j ¼ 0; ð3:72Þ

A91
�SSxt
3i;j � �SSxy

3i;js � �vvxyi;j;k�1 þ A92�vvxti;j�1 þ ð1� A92Þ�vvxti;j ¼ 0; ð3:73Þ

Aa1
�SSyt
2i;j � �SSxy

2i;js � �vvxyi;j;k�1 þ Aa2�vv
yt
i�1;j þ ð1� Aa2Þ�vvyti;j ¼ 0; ð3:74Þ

where Aa1; Aa2 have definitions similar to A91 and A92. The uniqueness of pressure, Eq. (3.69), has the
following form:

1

2
�ppxti;j þ

1

2
�ppxti;j�1 �

1

2
�ppyti;j �

1

2
�ppyti�1;j �

b2
j

3
�SSxt
1i;j þ

a2
i

3
�SSyt
1i;j ¼ 0: ð3:75Þ

Thus, a total of 16 algebraic equations are derived for 16 unknowns for each cell: eight from the
continuity of transverse-integrated variables and their derivatives [Eqs. (3.48)–(3.55)]; three from the cell-

averaged conservation equations [Eqs. (3.57)–(3.59)]; and five from the uniqueness conditions [Eqs. (3.71)–

(3.75)]. The pseudo-source terms are eliminated next from this set, leaving only eight physically relevant

unknowns and eight equations per cell.
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3.7. Set of discrete equations

The final set of eight, discrete, algebraic equations are:

F17�ppxti;j ¼ F11 �ppxti;j�1 þ F12 �ppxti;jþ1 þ F13ð�ppyti;j þ �ppyti�1;jÞ þ F14ð�ppyti;jþ1 þ �ppyti�1;jþ1Þ þ F15f1i;j þ F16f1i;jþ1; ð3:76Þ

F27�pp
yt
i;j ¼ F21 �pp

yt
i�1;j þ F22 �pp

yt
iþ1;j þ F23ð�ppxti;j þ �ppxti;j�1Þ þ F24ð�ppxtiþ1;j þ �ppxtiþ1;j�1Þ þ F25f1i;j þ F26f1iþ1;j; ð3:77Þ

F37�uuxti;j ¼ F31�uuxti;j�1 þ F32�uuxti;jþ1 þ F33ð�uuxyi;j þ �uuxyi;j;k�1Þ þ F34ð�uuxyi;jþ1 þ �uuxyi;jþ1;k�1Þ; ð3:78Þ

F37�vvxti;j ¼ F31�vvxti;j�1 þ F32�vvxti;jþ1 þ F33ð�vvxyi;j þ �vvxyi;j;k�1Þ þ F34ð�vvxyi;jþ1 þ �vvxyi;jþ1;k�1Þ; ð3:79Þ

F57�uu
yt
i;j ¼ F51�uu

yt
i�1;j þ F52�uu

yt
iþ1;j þ F53ð�uuxyi;j þ �uuxyi;j;k�1Þ þ F54ð�uuxyiþ1;j þ �uuxyiþ1;j;k�1Þ; ð3:80Þ

F57�vv
yt
i;j ¼ F51�vv

yt
i�1;j þ F52�vv

yt
iþ1;j þ F53ð�vvxyi;j þ �vvxyi;j;k�1Þ þ F54ð�vvxyiþ1;j þ �vvxyiþ1;j;k�1Þ; ð3:81Þ

F77�uu
xy
i;j ¼ F71�uuxti;j þ F72�uuxti;j�1 þ F73�uu

xy
i;j;k�1 þ F74�uu

yt
i;j þ F75�uu

yt
i�1;j þ f2i;j; ð3:82Þ

F77�vv
xy
i;j ¼ F71�vvxti;j þ F72�vvxti;j�1 þ F73�vv

xy
i;j;k�1 þ F74�vv

yt
i;j þ F75�vv

yt
i�1;j þ f3i;j; ð3:83Þ

where F �s are coefficients that are functions of ai; bj; m; s; Reui;j; Revi;j and Ai;j. For example,

F11 ¼
1

2bj
þ 3bj

2ða2
i þ b2

j Þ
; ð3:84Þ

F31 ¼ A21 �
A23A92

A91

ð3:85Þ

and

F73 ¼
1

2

1

A91

�
þ 1

Aa1
� 1

s

�
: ð3:86Þ

The discrete unknowns for the cell ði; j; kÞ are the variables averaged on the cell surfaces:
�uuxti;j; �vvxti;j; �ppxti;j; �uuyti;j; �vvyti;j; �ppyti;j; �uuxyi;j; �vvxyi;j.

4. Boundary conditions

The discrete unknowns in the scheme developed in the previous section are the dependent variables

averaged over the surfaces of the space–time cell ði; j; kÞ in X–Y–T space. Boundary conditions for velocities

are relatively straightforward. No slip boundary conditions are imposed on solid surfaces. In addition,

Dirichlet condition can also be specified, for example, on inlet surfaces. Nodal scheme developed in the

previous section leads to a collocated discretization. Hence, along with boundary conditions on u and v

velocities, pressure boundary conditions are also needed.

Boundary conditions for pressure on no-slip surfaces are derived using the x- and y-momentum

equations [26–29]. For example, on vertical no-slip surfaces, u ¼ v ¼ 0; ou=ot ¼ o2u=oy2 ¼ 0, and thus,

the u-momentum equation, averaged locally over y and t, becomes [29]
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� 1

q
d�ppytðxÞ

dx
þ v

d2�uuytðxÞ
dx2

þ �bbytx ¼ 0: ð4:1Þ

One straightforward approach to derive the discrete form of this boundary condition is to satisfy Eq. (4.1)

on the surface of the boundary cell. This can be achieved by substituting in Eq. (4.1) the expressions derived

in Section 3.4 for the local solution of transverse-integrated pressure �ppytðxÞ

�ppytðxÞ ¼
�SSyt
1

2
x2 þ B1xþ B2

and transverse-integrated velocity �uuytðxÞ

�uuytðxÞ ¼ B3e
upx=m þ �SSyt

2 xþ B4:

Thus, algebraic equations for transverse-averaged pressure on vertical boundaries can be easily obtained.

However, local solutions for �ppytðxÞ and �uuytðxÞ are second-order accurate. Consequently, the second deriv-
ative of �uuytðxÞ only has zeroth-order accuracy, and the discrete form of the boundary condition will also be

only zeroth-order accurate. Hence, to derive a second-order accurate boundary condition for pressure,

consistent with the second-order accuracy of the scheme, a fourth-order accurate finite difference expression

for �uuytðxÞ on the boundaries is used. For a stationary right vertical surface the boundary condition is

developed as follows. Let the discrete variable �uuyt on the right surface of a boundary cell (i; j), and on the

right surfaces of cells (i� 1; j), (i� 2; j) and (i� 3; j) be represented by �uuytðx0Þ ¼ �uuyti;j; �uuytðx0 � h1Þ ¼ �uuyti�1;j;
�uuytðx0� h1 � h2Þ ¼ �uuyti�2;j and �uuytðx0 � h1 � h2 � h3Þ ¼ �uuyti�3;j (see Fig. 3). A second-order accurate discrete

approximation for the second derivative at x ¼ x0 is

d2�uuytðx ¼ x0Þ
dx2

¼ 2ð3h1 þ 2h2 þ h3Þ
h1ðh1 þ h2Þðh1 þ h2 þ h3Þ

�uuyti;j �
2ð2h1 þ 2h2 þ h3Þ
h1h2ðh2 þ h3Þ

�uuyti�1;j þ
2ð2h1 þ h2 þ h3Þ
h2ðh1 þ h2Þh3

�uuyti�2;j

� 2ð2h1 þ h2Þ
h3ðh2 þ h3Þðh1 þ h2 þ h3Þ

�uuyti�3;j þOðh2Þ: ð4:2Þ

The large template for the second derivative can be reduced by imposing additional conditions. For ex-

ample, the continuity equation

ou
ox

þ ov
oy

¼ 0; ð4:3Þ

Fig. 3. Boundary condition for pressure at the right surface.
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when imposed along a stationary, vertical, no-slip wall, requires

ou
ox

¼ 0: ð4:4Þ

Transverse integrating Eq. (4.4) locally over y and t yields

d�uuyt

dx
¼ 0: ð4:5Þ

Using a third-order accurate finite difference expression for the first derivative, Eq. (4.5) becomes

d�uuytðx ¼ x0Þ
dx

¼ 1

h1

�
þ 1

h1 þ h2

þ 1

h1 þ h2 þ h3

�
�uuyti;j �

ðh1 þ h2Þðh1 þ h2 þ h3Þ
h1h2ðh2 þ h3Þ

�uuyti�1;j

þ h1ðh1 þ h2 þ h3Þ
h2ðh1 þ h2Þh3

�uuyti�2;j �
h1ðh1 þ h2Þ

h3ðh2 þ h3Þðh1 þ h2 þ h3Þ
�uuyti�3;j þOðh3Þ ¼ 0: ð4:6Þ

Eq. (4.6) is used to eliminate the discrete variable farthest from the surface (�uuyti�3;j) from the four-point finite

difference expression (Eq. (4.2)), resulting in a second-order accurate, three-point scheme for the second

derivative at the wall, d2�uuytðx ¼ x0Þ=dx2,

d2�uuyt

dx2







wall

¼ d2�uuytðx ¼ x0Þ
dx2

¼ � 2ð3h2
1 þ 3h1h2 þ h2

2Þ
h2
1ðh1 þ h2Þ2

�uuyti;j þ
2ðh1 þ h2Þ

h2
1h2

�uuyti�1;j �
2h1

h2ðh1 þ h2Þ2
�uuyti�2;j þOðh2Þ: ð4:7Þ

A second-order accurate scheme for the first derivative of pressure at the wall is also developed in a similar
manner. [However, the results obtained using the second-order scheme and those obtained using the cell in-

terior expression for �ppytðxÞ to evaluate the derivative d�ppyt=dxjwall, yield similar numerical results.] These ex-

pressions for d2�uuyt=dx2 and d�ppyt=dx are substituted in Eq. (4.1) to obtain the discrete form of the pressure

boundary condition for �ppyti;j at the right wall. Pressure boundary conditions for the other walls are similarly

derived.

This completes the development of the set of discrete equations for the time-dependent, incompressible

Navier–Stokes equations. This set of equations has been implemented in a Fortran code, and tested on several

two-dimensional, steady-state and time-dependent fluid flow problems. Steady-state problems are solved by
marching in time. Several iterative approaches have been tested to solve the final set of algebraic equations at

each time step. Results presented in the next section are based on a Gauss–Seidel iterative procedure in

conjunction with a Simple-like algorithm that couples the field variables. That is, for fixed pressure field,

velocities are evaluated from bottom left to the top right of the domain, row by row. Next, keeping velocities

fixed, discrete pressure values are evaluated (row by row) from lower left of the domain to the top right of the

domain. For given velocity field, around 15 pressure-sweeps yield near optimum convergence. (For pressure

updates, ADI scheme was tested but was found to be less efficient.) As is the case with many other iterative

approaches, formost examples studied here only a single sweep to update the velocity, for given pressure field,
was found to be sufficient. Numerical results are reported in the following section.

5. Numerical results

Numerical scheme and the boundary conditions developed in Sections 3 and 4 were coded in

Fortran. The code runs on a SUN Ultra II as well as on a PC running LINUX operating system. All
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CPU times reported in this section are for simulations carried out on the PC. CPU times for the

1.5GHz PC were lower by up to a factor of 8 when compared with those for the SUN Ultra II

workstation.

Numerous problems, including the classical lid driven cavity problem, have been solved using this

modified nodal scheme. Results are presented here for three problems: two, two-dimensional steady-state

problems, and a two-dimensional, time-dependent problem. Two of these have exact analytical solutions,

and all three have been used extensively by researchers to test numerical schemes developed for the Navier–

Stokes equations.

5.1. Classical lid driven cavity problem

In this well-known problem [30], the flow in a square cavity of dimension one on each side is
driven by the moving lid. The other three surfaces are at zero velocity. Numerical results obtained

over a very fine mesh [31] have been widely used for comparison. For a Reynolds number of 1000,

Fig. 4 shows the u velocity component along the vertical line passing through the center of the box.

Fine-mesh results of [31] are also plotted. Fig. 5 shows the v velocity component along the horizontal

line passing through the center of the box. Also shown are fine-mesh results from [31]. For nodal

method, �uuyt and �vvxt values are plotted at the center of the cell. Results are presented for 12� 12,

16� 16 and 20� 20 non-uniform mesh. Non-uniform meshes for this problem were generated using a

geometric factor of 1.4 from the center of the cavity toward the wall. Even for as coarse as 12� 12
mesh, results match fairly well with the reference data. Results obtained on the 16� 16 mesh compare

very well with those reported in [32] (30� 30 mesh) obtained using a variable explicit/implicit method

for unstructured meshes.

Figs. 6 and 7 show the u and v velocities along the vertical and horizontal lines passing through the

center of the box for a Reynolds number of 100. Fine mesh results from [31] are also shown. Results

presented in Figs. 6 and 7 are obtained using 4� 4, 8� 8 and 16� 16 non-uniform meshes. The geometric

factor used was 1.3. Fine mesh results of [31] are also shown. Even the results on a very coarse 4� 4 mesh,

for this relatively low Reynolds number problem, agree fairly well with the fine-mesh data.

Fig. 4. u-Velocity along the vertical line through geometric center of the cavity for classical lid-driven cavity problem for Re ¼ 1000.

Fine mesh results are from [31]. Results of the nodal scheme are plotted at the center of the cell.

F. Wang, Rizwan-uddin / Journal of Computational Physics 187 (2003) 168–196 187



5.2. Modified lid driven cavity problem

A variation of the classical lid driven cavity problem has been proposed by Shin et al. [33]. This
problem – here referred to as the modified lid driven cavity problem – has an exact analytical solution.

The modifications include a lid velocity that varies along the lid, i.e., ulid ¼ uðxÞ, and space-dependent

body forces within the cavity. The fact that the lid velocity is equal to zero at the two corners elim-

inates the singularity that exists at those two points in the classical lid driven cavity problem. This

problem was solved by Shin et al. to compare nine numerical schemes developed for the Navier–Stokes

equations [33]. The exact solution is reproduced in Appendix A [33]. The velocity and pressure fields,

Fig. 6. u-Velocity along the vertical line through geometric center of the cavity for classical lid-driven cavity problem for Re ¼ 100.

Fine mesh results are from [31]. Results of the nodal scheme are plotted at the center of the cell.

Fig. 5. v-Velocity along the horizontal line through geometric center of the cavity for classical lid-driven cavity problem for Re ¼ 1000.

Fine mesh results are from [31]. Results of the nodal scheme are plotted at the center of the cell.
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uðx; yÞ, vðx; yÞ and pðx; yÞ, over 06 x6 1 and 06 y6 1, are shown in Fig. 8. A vector plot of the velocity

field for Re ¼ 1 is shown in Fig. 9.

This steady-state problem is also solved by starting from an arbitrary initial condition (zero uniform

velocity and zero uniform pressure) and marching in time till steady state is reached. The results for
Reynolds number Re ¼ 1, 10 and 20 are given in Tables 1–3. These results were obtained with Dirichlet

boundary conditions for all variables, including pressure, on all surfaces. RMS errors in �uuxy , �vvxy , �ppxt and �ppyt

are reported for different mesh sizes. CPU times are also reported. For Re ¼ 1, even for as coarse as 5� 5

uniform mesh, the numerical scheme developed here yields a small RMS error of 0.006 and 0.001 for �uuxy

and �vvxy ; and it takes only 1.2 s of CPU time on the PC. The CPU time is low despite the fact that very simple

Gauss–Seidel sweeps are used repeatedly at each time step till convergence. For larger problems, significant

savings in CPU time can be achieved by incorporating more efficient solvers.

The near second-order accuracy of the scheme can be seen from the tables, confirming the (at least)
second-order nature of the approximations introduced in the development. As the Reynolds number is

increased to 10, the RMS error for velocity and pressure (except for �vvxy) in general decrease, in some case by

as much as a factor of 5. However, the error in cell-averaged v velocity increases. The error in �uuxy , �ppxt and �ppyt

Fig. 7. v-Velocity along the horizontal line through geometric center of the cavity for classical lid-driven cavity problem for Re ¼ 100.

Fine mesh results are from [31]. Results of the nodal scheme are plotted at the center of the cell.

Fig. 8. Velocity and pressure fields of the modified lid driven cavity problem.

F. Wang, Rizwan-uddin / Journal of Computational Physics 187 (2003) 168–196 189



Fig. 9. Velocity vector plot of the modified lid driven cavity problem.

Table 1

RMS errors and CPU times for Re ¼ 1 (Dirichlet boundary conditions)

Mesh �uuxy �vvxy �ppxt �ppyt CPU time (s)

5� 5 0:5816� 10�2 0:1058� 10�2 0:1849� 10�1 0:2211� 10�1 1.2

10� 10 0:1313� 10�2 0:2595� 10�3 0:5448� 10�2 0:5539� 10�2 2.2

20� 20 0:2779� 10�3 0:6216� 10�4 0:1703� 10�2 0:1709� 10�2 31.9

RMS errors and CPU times for three different mesh sizes for the modified lid driven cavity problem with Re ¼ 1. Dirichlet

boundary conditions for pressure were imposed on all surfaces.

Table 3

RMS errors and CPU times for Re ¼ 20 (Dirichlet boundary conditions)

Mesh �uuxy �vvxy �ppxt �ppyt CPU time (s)

5� 5 0:5398� 10�2 0:6616� 10�2 0:7904� 10�2 0:8506� 10�2 2.4

10� 10 0:1173� 10�2 0:1333� 10�2 0:1623� 10�2 0:1736� 10�2 6.4

20� 20 0:2946� 10�3 0:3119� 10�3 0:3758� 10�3 0:3771� 10�3 85.1

RMS errors and CPU times for three different mesh sizes for the modified lid driven cavity problem with Re ¼ 20. Dirichlet

boundary conditions for pressure were imposed on all surfaces.

Table 2

RMS errors and CPU times for Re ¼ 10 (Dirichlet boundary conditions)

Mesh �uuxy �vvxy �ppxt �ppyt CPU time (s)

5� 5 0:4077� 10�2 0:3715� 10�2 0:8003� 10�2 0:8373� 10�2 1.3

10� 10 0:9918� 10�3 0:7849� 10�3 0:1585� 10�2 0:1628� 10�2 3.3

20� 20 0:2511� 10�3 0:1879� 10�3 0:3740� 10�3 0:3752� 10�3 37.5

RMS errors and CPU times for three different mesh sizes for the modified lid driven cavity problem with Re ¼ 10. Dirichlet

boundary conditions for pressure were imposed on all surfaces.
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remain roughly the same as the Reynolds number is increased to 20, while the error in �vvxy increases by as

much as a factor of almost 2.

The problem was then solved using the pressure boundary conditions developed in Section 4. No-slip

boundary conditions were imposed for velocities on all surfaces. The problem was solved for Reynolds

number of 1, 10 and 20, on 5� 5; 10� 10 and 20� 20 uniform meshes. See Tables 4–6. The RMS errors

for Re ¼ 1 are in general higher than the corresponding RMS errors found with Dirichlet boundary

conditions for pressure. However, RMS errors in �uuxy are lower by as much as a factor of 2. The RMS errors

for velocities are in the range of 0:22� 10�2–0:95� 10�4. As the Reynolds number is increased to 10 and
then 20, RMS error in velocities either remain approximately constant or increase, while RMS errors in

pressure decrease significantly. It should be noted that several schemes based on central finite difference

approach, tested and reported in [33], failed to converge to the correct solution for Re > 10, and those that

did, converged to grossly inaccurate solutions [33]. Moreover, RMS errors in the numerical results obtained

here are lower than the errors in eight of the nine schemes tested in [33]. Only the results obtained using the

4/4 non-staggered (HO) scheme are comparable with those obtained using the nodal scheme.

5.3. Taylor’s decaying vortices

The third problem solved is the time-dependent Taylor�s decaying vortices problem [34]. The problem

was chosen because it has an exact analytical solution, allowing for accurate error analysis. Kim and Moin

[35] utilized the exact solution to test the boundary conditions for the fractional step method. Henriksen

Table 4

RMS errors and CPU times for Re ¼ 1 (pressure boundary conditions)

Mesh �uuxy �vvxy �ppxt �ppyt CPU time (s)

5� 5 0:2184� 10�2 0:2180� 10�2 0:7851� 10�1 0:9017� 10�1 0.8

10� 10 0:5278� 10�3 0:4302� 10�3 0:1757� 10�1 0:1918� 10�1 7.56

20� 20 0:1251� 10�3 0:9451� 10�4 0:4193� 10�2 0:4404� 10�2 133.3

RMS errors and CPU times for three different mesh sizes for the modified lid driven cavity problem with Re ¼ 1. Pressure boundary

conditions for pressure developed in Section 4 were imposed on all surfaces.

Table 5

RMS errors and CPU times for Re ¼ 10 (pressure boundary conditions)

Mesh �uuxy �vvxy �ppxt �ppyt CPU time (s)

5� 5 0:2229� 10�2 0:2709� 10�2 0:1074� 10�1 0:1039� 10�1 6.2

10� 10 0:5421� 10�3 0:5075� 10�3 0:2473� 10�2 0:2456� 10�2 30.3

20� 20 0:1400� 10�3 0:1171� 10�3 0:6152� 10�3 0:6045� 10�3 375.1

RMS errors and CPU times for three different mesh sizes for the modified lid driven cavity problem with Re ¼ 10. Pressure

boundary conditions for pressure developed in Section 4 were imposed on all surfaces.

Table 6

RMS errors and CPU times for Re ¼ 20 (pressure boundary conditions)

Mesh �uuxy �vvxy �ppxt �ppyt CPU time (s)

5� 5 0:3503� 10�2 0:4112� 10�2 0:9185� 10�2 0:7427� 10�2 20.5

10� 10 0:7713� 10�3 0:7678� 10�3 0:2059� 10�2 0:1917� 10�2 64.0

20� 20 0:1964� 10�3 0:1794� 10�3 0:5078� 10�3 0:4808� 10�3 582.8

RMS errors and CPU times for three different mesh sizes for the modified lid driven cavity problem with Re ¼ 20. Pressure

boundary conditions for pressure developed in Section 4 were imposed on all surfaces.
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and Holmen [36] used it to test their algebraic splitting scheme for the incompressible Navier–Stokes

equations. Quarteroni et al. [37] also tested their factorization methods using the exact solution.

An exact solution of the two-dimensional, time-dependent Navier–Stokes equations, with q ¼ 1, is given

by the stream function [34]

wðx; y; tÞ ¼ x
ðk2

x þ k2
y Þ

exp½�mðk2
x þ k2

y Þt
 cosðkxxÞ cosðkyyÞ; ð5:1Þ

which leads to the following uðx; y; tÞ and vðx; y; tÞ velocities:

uðx; y; tÞ ¼ � ow
oy

¼ �xky
ðk2

x þ k2
y Þ

exp½�mðk2
x þ k2

y Þt
 cosðkxxÞ sinðkyyÞ; ð5:2Þ

vðx; y; tÞ ¼ ow
ox

¼ xkx
ðk2

x þ k2
y Þ

exp½�mðk2
x þ k2

y Þt
 sinðkxxÞ cosðkyyÞ; ð5:3Þ

Fig. 10. (a–c) Velocity (u and v) and pressure fields for the Taylor�s decaying vortices problem at t ¼ 0. (d) Corresponding velocity

vector plot. Coefficients of three neighboring discrete variables at two different locations (A and B) are shown in Table 7.
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where x is the initial maximum vorticity, and kx and ky are wave numbers. The field represents a decaying

system of eddies in a rectangular array rotating alternately in opposite directions. The u and v velocities

and pressure at time t ¼ 0 are shown in Fig. 10(a)–(c) over 06 x6 1, 06 y6 1. Fig. 10(d) shows the

vector plot of the flow field. Parameter values for the flow shown in Fig. 10 are kx ¼ ky ¼ 2p; x ¼ 2p2

and m ¼ 1.

The problem was solved over 06 x6 1; 06 y6 1 with Dirichlet boundary conditions for all vari-

ables on all surfaces [34,35]. Numerical results for �uuxtðyÞ and �ppxtðyÞ for 0:43756 x6 0:5 at four dif-

ferent times are compared with the exact solutions in Fig. 11(a) and (b). These results were obtained
on a 16� 16 uniform mesh, and with Dt ¼ 0:005. The RMS error at t ¼ 0:01 for the 16� 16 grid case

is 1:1� 10�3 for �uuxt and 7:4� 10�3 for �ppxt. An even coarser, 8� 8 grid, calculation leads to an

RMS error of only 6:8� 10�3 for �uuxt and 2:7� 10�2 for �ppxt at t ¼ 0:01, again showing the near

second-order accuracy of the method. In fact, in some cases, the results show a better than second-

order accuracy.

The numerical scheme developed here, as was pointed out in Section 3, has ‘‘inherent upwinding.’’

That is, based on flow directions at neighboring cells, the velocity coefficients in the discrete algebraic

equations are automatically adjusted. This characteristic of the scheme is demonstrated by evaluating
the velocity coefficients in the neighboring cells in determining �uuyt values at two different locations in the

Taylor�s decaying vortices problem. Two neighboring cells at two different locations are shown sche-

matically in Fig. 10(d) and identified by the letters A and B. The flow at A is to the left, and at B it

is to the right. The u velocity �uuyti;j;k at each of these locations is evaluated using Eq. (3.80) in terms of

the neighboring velocities �uuyti�1;j;k and �uuytiþ1;j;k (in addition to other discrete variables). Eq. (3.80) is re-

written as

�uuyti;j ¼ t1�uuyti�1;j þ t2�uuyti;j þ t3�uuytiþ1;j þ t4ð�uuxyi;j þ �uuxyi;j;k�1Þ þ t5ð�uuxyiþ1;j þ �uuxyiþ1;j;k�1Þ ð5:4Þ

and the coefficients at t ¼ 0:01 (after 20 time steps) are shown in Table 7. These coefficients correspond

to the simulation over a 10� 10 grid for m ¼ 0:001. The magnitude of the coefficients of �uuyti�1;j;k and
�uuytiþ1;j;k, t1 and t3, for the two cases clearly show that the numerical scheme is automatically ‘‘weighting’’

the coefficients as a function of the flow direction. In addition, the magnitudes of the coefficients of the

local space-averaged u velocities (averaged over x and y; �uuxy) are also adjusted as a result of the flow

direction.

Fig. 11. Numerical and exact solutions of the Taylor�s decaying vortices problem at different times. (a) u velocity; (b) pressure.
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6. Summary and conclusions

A modified nodal integral method has been developed for the time-dependent, Navier–Stokes equation.

Pressure is determined by solving a Poisson equation. The scheme is developed by first reducing the Navier–

Stokes equations to a set of ordinary differential equations by transverse integrating the partial differential

equations in each cell. The formulation leads to a quadratic local profile for the cell interior pressure in each

spatial direction, and a constant+ linear+ exponential variation for each of the transverse-integrated ve-
locities in each direction. Despite the fact that there are more unknowns per cell than in typical finite

difference or finite volume schemes, the nodal scheme is very efficient. A desired level of accuracy is

achieved by the nodal scheme with much coarser mesh size, hence making up for the larger number of

discrete unknowns per cell.

The numerical scheme developed here is semi-implicit. Introduction of the convection term, with the

velocity evaluated at the previous time step, leads to a formulation in which the exponential terms are

evaluated only at the previous time step. Hence, these exponential functions are to be evaluated only once

for each time step instead of repeated evaluation at each iteration. The scheme has inherent upwinding,
automatically adjusting weights of its coefficients depending upon the flow direction. Applications to two

steady-state and one time-dependent problems show very good agreement with the exact solutions or with

the fine mesh solution, even for relatively coarse meshes. Numerical results also show the near second-order

accuracy of the scheme, consistent with previously reported results for nodal schemes based on approxi-

mations similar to those introduced here. Applications to the steady-state problems reported here show that

the scheme converges to the correct solution from a very wide range of initial guesses.

It is clear that the analytical pre-processing of the set of PDEs leads to an efficient numerical

scheme. However, this efficiency is not without its limitations. Most severe limitation of the nodal
schemes based on transverse-integrating procedure is that they are limited to domains with boundaries

that are parallel to the x or y axes. However, hybrid schemes applicable to complex domains recently

developed for the convection–diffusion equation – that couple nodal schemes (applied to brick-like cells

in the interior of the physical domain as well as adjacent to horizontal or vertical boundaries) with

finite analytic or finite element method (for regions adjacent to boundaries that are not parallel to the

Cartesian axes) – have been very promising [38]. Their extension to the Navier–Stokes equations will

relax this limitation of the nodal approach.
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Table 7

Coefficients of discrete variables showing inherent upwinding

Coeff A B

t1 0.23 918.56

t2 958.78 958.78

t3 918.56 0.23

t4 )10.23 )928.56
t5 )928.56 )10.23

Coefficients of the neighboring discrete variables at two different locations (A and B, shown in Fig. 10(d)) in the Taylor�s decaying

vortices problem. See Eq. (5.4).
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Appendix A

Exact solution of the modified lid driven cavity problem (06 x6 1 and 06 y6 1) is given by [33]

uðx; yÞ ¼ 8ðx2 � 2x3 þ x4Þð�2y þ 4y3Þ;

vðx; yÞ ¼ �8ð2x� 6x2 þ 4x3Þð�y2 þ y4Þ

and

pðx; y;ReÞ ¼ 8

Re
24

x3

3

��
� x4

2
þ x5

5

�
y þ ð2x� 6x2 þ 4x3Þð� 2y þ 4y3Þ

�

þ 64
x4

2

�
� 2x5 þ 3x6 � 2x7 þ x8

2

�	
� ð� 2y þ 4y3Þ2 þ ð� 2þ 12y2Þð � y2 þ y4Þ



;

where the non-uniformly distributed body forces are given by

bxðx; y;ReÞ ¼ � 8

Re
24

x3

3

��
� x4

2
þ x5

5

�
þ 2ð2x� 6x2 þ 4x3Þð� 2þ 12y2Þ þ ð� 12þ 24xÞð� y2 þ y4Þ

�

þ 64

�
� ð� 2x2 þ 8x3 � 14x4 þ 12x5 � 4x6Þð� 2y þ 4y3Þð� y2 þ y4Þ

þ x4

2

�
� 2x5 þ 3x6 � 2x7 þ x8

2

��
� ð� 2þ 12y2Þð� 2y þ 4y3Þ þ 24yð� y2 þ y4Þ

��
;

by ¼ 0:

The lid velocity is given by

ulidðxÞ ¼ uðx; y ¼ 1Þ ¼ 16ðx2 � 2x3 þ x4Þ:
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